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Finite-difference calculations of steady-state fluid flow problems are commonly 
performed by the asymptotic unsteady flow method, in which a time-dependent cal- 
culation is performed and the steady-state solution is approached asymptotically 
in the limit of long time. The purpose of this note is to present a simple method for 
reducing the amount of computer time required to perform such calculations in the 
case of primarily supersonic flow in two dimensions. In most cases, it should be a 
relatively simple matter to incorporate the method into existing two-dimensional 
time-marching compressible-flow computer codes. We are successfully using the 
method in conjunction with the RICE code [l] to calculate supersonic mixing flow 
in CW chemical lasers. 

Consider the typical two-dimensional computing region shown in Fig. 1. The 
region is divided into cells of dimensions dx and dy and indexed by integers Z and J 
in the x and y directions, respectively. There are IMAX cells in the x direction and 
JMAX cells in the y direction. The primary flow direction is the x direction, with the 
inflow at Z = 1 (x = 0) and the outflow at Z = IMAX (x = L = (IMAX) dx). 
The timestep is denoted by At and a representative flow speed is denoted by 6. The 
flow is assumed to be supersonic, so that physical boundary conditions are imposed 
at the inflow but not at the outflow. 
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FIG. 1. Typical computing region and mesh. 
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We now consider the computer time required to perform a steady-state calculation 
in this region. Let the basic “grind time” (i.e., CPU time per cell per timestep) of 
the computer code in question be T. The total CPU time required for the calculation 
is then 

CPU = T(IMAX)(JMAX) N, (1) 

where N is the number of timesteps required. Let us assume, as is frequently the case, 
that N is proportional to the number of timesteps required for the fluid to traverse 
the mesh. Then 

N = K(IMAX)/a, (2) 

where (II = U dt/dx is the convective Courant number and the coefficient of propor- 
tionality K is typically about 2.5. Combining Eqs. (1) and (2), we obtain 

CPU = KT(IMAX)~(JMAX)/~U. 

Note that this expression is quadratic in IMAX. 

(3) 

The estimate of Eq. (3) applies to the usual straightforward procedure of calculating 
the entire computing region at once. But now consider the alternative procedure of 
dividing the region into two parts at the line x = $L and computing each part to 
steady state separately. The upstream part (0 < x < +L) must of course be computed 
first. This calculation does not require outflow boundary conditions at x = +L 
because the flow is supersonic. After the upstream section (0 < x < &L) has been 
calculated, the steady-state conditions at x = ijL are known and are to be used as 
the inflow boundary conditions for the downstream section (-&L < x < L). The 
CPU time required to calculate either section is clearly given by Bq. (3) with IMAX 
replaced by IMAX/2. Thus the total CPU time required to calculate the two parts 
to steady state separately is 

CPU = $KT(IMAX)~(JMAX)/~. (4) 

Comparison with Eq. (3) shows that by splitting the computing region into two parts 
we have reduced the CPU time required for the complete calculation by a factor of 2. 
This reduction is a consequence of the fact that Eq. (3) is quadratic rather than linear 
in IMAX. Similarly, it is clear that by splitting the region into II parts the CPU time 
required is reduced by a factor of n. Of course n cannot be chosen arbitrarily large, 
since in each part or subregion there must be enough cells in the x direction that 
numerical outflow boundary effects are negligible. The number of cells required for 
this purpose will depend, in general, upon both the problem under consideration 
and the numerical scheme, and must therefore be determined by numerical experi- 
mentation. In the RICE code, we have found in practice that the condition 
IZ 5 (IMAX)/lO is sufficient; i.e., each subregion should contain about ten cells in 
the x direction. Thus for IMAX = 100 a savings in CPU time of a factor of 10 can 
be realized. 

Although we have considered a rectangular region and mesh for purposes of 
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illustration, this is clearly not essential to the conclusions. It is also not essential that 
the flow be everywhere supersonic; it only needs to be supersonic along each of the 
lines at which the region is subdivided, so that in each subcalculation outflow boundary 
conditions are not required. 

When first confronted by the above argument, one tends to feel that something has 
been obtained for nothing. However, a physical interpretation of the CPU time savings 
can readily be given. The usual straightforward approach of calculating the entire 
region at once is in fact highly inefficient, because the upstream cells become steady 
long before the downstream cells and continue to be calculated even though they are 
no longer changing. In addition, the downstream cells are calculated while cells 
upstream of them are still changing rapidly, before they have any possibility of 
becoming steady. By splitting up the region into several parts, the number of cells 
being calculated unnecessarily in this way is greatly reduced. 

Although the procedure outlined above reduces the CPU time by a large factor, 
it is inconvenient to use because it requires one to perform a sequence of separate 
calculations, in which the steady-state outflow conditions from each calculation must 
be processed and converted into inflow boundary conditions for the next. A more 
convenient and systematic procedure is the following. In the computer code the region 
of calculation is specified by the range over which the Z loops run, which in the basic 
code is from 1 to IMAX. It is a simple matter to modify the code so that these loops 
run from IL to IR, where IL and IR are allowed to change during the calculation to 
reflect the development of the steady region in the flow field. At the beginning of the 
calculation one would set IL = 1 and IR = IRl, where IRl is a specified constant 
integer which would typically be about 10. (We emphasize again that this number 
must be determined empirically.) As soon as the column of cells with I = 1 becomes 
steady (according to some suitable criterion) one increments IL and IR by one, so 
that the Z loops run from 2 to IRl + 1. The fluid variables in the column Z = 1 
then remain frozen at their steady values and serve as the inflow boundary conditions 
for the region Z = 2 to IRl + 1. When the column Z = 2 becomes steady IL and IR 
are again incremented by one, and so on. The calculation continues in this fashion 
until IR = IMAX, at which point IL and IR are held fixed and the calculation is 
continued until the column IMAX becomes steady. The CPU time required to per- 
form the calculation in this manner is approximately the same as that required to 
split the calculation into IMAX/IRl parts, namely 

CPU = (IRl/IMAX) KT(IMAX)~(JMAX)/K (5) 

The presence of subsonic regions in the flow field is a complicating factor. It is 
necessary that the flow be supersonic in the entire column Z = IR at all times. If 
the subsonic regions are small, localized, and relatively few in number, this require- 
ment can be met by monitoring the minimum Mach number in the column Z = IR, 
and by incrementing 1R by one whenever this number falls below unity. A subsonic 
region near Z = 1 can be handled by choosing the initial IR large enough to enclose 
it, and then incrementing only IL until the difference IR-IL decreases to the desired 
value 1Rl - 1, after which IL and IR are again incremented simultaneously. 
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At the beginning of the calculation initial conditions must be specified throughout 
the mesh. These initial conditions must be supersonic so that newly activated cells 
will be supersonic even when localized subsonic regions develop in the steady-state 
flow field. 

In principle, the method described above is not applicable to fluids in which diffusion 
of mass, momentum, and energy may occur, because the equations then have a para- 
bolic character and require outflow boundary conditions. In practice, however, this 
is not a restriction, because diffusion in the primary flow direction is in general 
negligible compared to convection in supersonic flow problems. (The ratio of diffusive 
to convective fluxes in the primary flow direction is of the order of the Knudsen 
number divided by the Mach number.) It therefore does no harm to simply use 
zero-gradient boundary conditions at the outflow at all times, so that the diffusive 
fluxes in the x direction are always zero at I = IR. In this way the present method 
can be applied to flow problems in which diffusion of mass, momentum, and/or 
energy in the transverse direction is important. It is clear, however, that the method 
cannot be directly applied to viscous flow past a solid wall, because the flow becomes 
subsonic near the wall. For such problems the method could only be applied to the 
supersonic “outer” region of the flow, and would have to be coupled to a boundary- 
layer solution procedure for the flow near the wall. While this could be done it is not 
very convenient; thus the primary applicability of the present method is to flows of 
mixing-layer type, where no solid walls are present. 

The above estimates of CPU time savings are based upon Eq. (2), which in effect 
identifies the characteristic time associated with the asymptotic approach to steady 
state with the time required for the fluid to traverse the mesh. In practice, of course, 
there are other characteristic times in the problem, and in the general case the longest 
of these times will govern the approach to steady state. In particular there exist 
transverse characteristic times associated with the extent of the mesh in the y direction. 
The most important of these is the time required for a sound signal to traverse the 
mesh in the y direction. In viscous or multicomponent flow problems there will also 
be a characteristic time associated with diffusion in the y direction. Ordinarily these 
transverse characteristic times are shorter than the longitudinal characteristic time 
upon which Eq. (2) is based, and hence do not govern the approach to steady 
state. However, when the mesh becomes very short in the x direction, as in 
the present method, these transverse characteristic times may eventually become 
longer than the longitudinal characteristic time. When this occurs Eq. (2) no 
longer applies and the CPU time savings predicted by Eq. (5) will be overly 
optimistic. 

A simple test for steady conditions in the column IL which appears to work well 
is the following. Focus attention on a given cell in the column IL, and continuously 
monitor the value of the quantity 4 on the current timestep n and on the timestep 
II - 5. The given cell is considered to be steady when 

4” __ - 1 < 5aix, 
P5 
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where 01 = U dr/dx and the coefficient Q is a convergence parameter. The column IL 
is considered to be steady when all cells in it are steady according to Eq. (6). This test 
cannot be applied until the column IL has run at least five cycles, which ensures that 
IL and IR cannot be incremented more frequently than every five cycles. Equation (6) 
is a difference approximation to the condition 

If the quantity q approaches its steady value exponentially with a time constant 
proportional to Ax/G, then the value of a needed to ensure a given accuracy will be 
a constant, independent of the problem and flow conditions. If the time constant is 
determined by some other time scale in the problem, then a will be problem-dependent 
to a certain degree. A suitable value for a must be determined by numerical experi- 
mentation. We have obtained good results in supersonic mixing flow calculations by 
choosing pressure for the quantity q and setting a N 10-3. 

Finally, we illustrate the use of the method by considering a simple supersonic 
mixing flow calculation. The geometry is as shown in Fig. 1, with IMAX = 60, 
JMAX = 6, dx = 2.0, and dy = 1.0 (nondimensional units). Species B enters the 
region through the lower half of the inflow boundary ( y < 3.0) with a velocity of 4.0, 
a density of 1.0, and a specific internal energy of 1.0. Species A enters the region 
through the upper half of the inflow boundary (y > 3.0) with a velocity of 2.0, 
a density of 0.5, and a specific internal energy of 2.0. Species A and B mix in the 
computing region and react chemically to produce a third species C, A + B -+ C. 
This problem was run twice using the RICE code, first in the conventional manner 
(i.e., without marching) and second using the marching method described in this paper. 
The second (marching) calculation was performed using q = pressure, a = 10-3, 
and IRl = 10. The results of the two calculations agree to within one or two percent 
in species concentrations, as shown in Table I, and to better than one percent in the 
primary fluid dynamical variables (pressure, velocity, etc.). The first calculation 
required 353 set of CDC 7600 CPU time, while the second calculation required only 
44 sec. 

TABLE I 

Partial Density of Species C vs Transverse Distance y at x = 119 (I = 60) With and 
Without Marching Method 

Partial density of species C 

Y Without marching With marching 

0.5 0.014136 0.014372 
1.5 0.064793 0.065538 
2.5 0.22690 0.23040 
3.5 0.52727 0.53145 
4.5 0.40114 0.40363 
5.5 0.25058 0.25566 
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